
for a Gurevich medium 

] = 2 c,~ t a' 
A 1 - -  a'  ( i  - -  A I n  a') 1/~, g = (1 - -  A l a  a')-*/2. 

Here A is the ratio of the shear elastic modulus to the relaxation one, and a' is the ratio 
of minimum to maximum relaxation times. 

Comparison of (A.5) and (A.4) shows that at distances x ~ c~ the maximum of l(t, x) 
is displaced with velocity co, and is determined by the expansion of K2(p) near the point 
p = 0. We note that for �9 + 0 there exists for the representation (A.5) a limiting transi- 
tion to the case of an ideal elastic medium l(t, x) = 6(t - x/c~), since f ~ ~-z. 
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STUDY OF ELASTOPLASTIC DEFORMATION FOR CYLINDRICAL SHELLS WITH 

AXIAL SHOCK LOADING 

A. I. Abakumov, G. A. Kvaskov, 
S. A. Novikov, V. A. Sinitsyn, 
and A. A. Uchaev 

UDC 620.178.7 

There is considerable practical interest in studying the dynamic stability of cylindrical 
shells under the action of axial intense shock loads. A shell is assumed to be dynamically 
stable if its movement is not accompanied by buckling, i.e., it is constrained. The nature 
of loss of stability for a cylindrical shell is determined mainly by its relative thickness 
h/R (h is shell thickness, R is central surface radius). For relatively thin shells with 
h/R < 1/100 elastic buckling is normally considered when loss of stability occurs with for- 
mation of rhombic hollows, and shell deflection as a result of sudden popping. With an 
increase in relative shell thickness plastic buckling is observed during its axial compres- 
sion. Plastic loss of stability is characterized by the fact that the shell may demonstrate 
marked resistance to buckling. In the initial stage of deformation with plastic buckling 
there is almost always axisymmetrical loss of stability in the form of an annular fold caused 
by the effect of boundary conditions at the shell edges. With further axial compression the 
shell continues to lose stability in axisymmetrical shape or it may change over to an asym- 
metrical form of loss of stability. It was shown by experiment in [I] that the form of loss 
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TABLE 1 
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*Test without filler. 

of stability depends on the relative thickness, in particular for aluminum shells a change- 
over from axisymmetrical to asymmetrical loss of stability is observed with h/R < 1/5. Anal- 
ysis of the mechanism for loss of stability indicates that for formation of the axisymmetri- 
cal form with h/R < 1/5 it is necessary that compressive axial stresses are balanced by in- 
ternal pressure with a capacity to block development of asymmetry in the shell during flex- 
ure. Internal pressure in the shell during deformation may be created as a result of filling 
its cavity with compressible (e.g., porous) material. Attainment of a stable axisymmetrical ~ 
form of loss of stability makes it possible in order to describe the behavior of a cylindri- 
cal shell with shock loading to usea procedure for calculating elastoplastic deformation 
of shells of rotation with axisymmetrical dynamic loading. The form of cylindrical shells 
after axial shock compression with asymmetrical (a is test 3, see Table I) and axisymmetrical 
(b, with the presence of internal pressure test 2 c, is the calculation) forms of loss of 
stability is shown in Fig. i. 

Experiments were carried out with cylindrical shells made of aluminum alloy AMg6 pre- 
pared from standard tubes. Shell geometric dimensions were R = 9.3 mm, h = 1.5 mm, length 

= 80 mm. Shell loading was accomplished by impact of a metal plate-striker over the end. 
The other end of the shell rested on an immovable support, i.e., a measuring rod (dynamo- 
meter). Compressive force measurement in each test, as in [I], was carried out by means of 
strain gauges glued to the dynamometer. In order to accomplish a stable axisymmetrical form 
of deformation the internal volume of the shell was filled with a porous material with den- 
sity p = 0.2 g/cm 3. The main shell loading parameters are presented in Table i. 

A number of works [2-7] have been devoted to the question of numerical description of 
axisymmetrical elastoplastic shell buckling in which with shock loading the process of shell 
behavior is only considered in the initial stage of forming folds. The complex nature of 
solving the problem with description for fold formation means that it is impossible to con- 
sider contact forces in the zone of a fold and the stress-strain state through the shell 
thickness. If as a final result we only take integral characteristics such as shell shape 
change and support reaction, then the requirement for quite accurate knowledge of the stress- 
strain state in the fold zone disappears. This makes it possible to describe fold formation 
approximately by using the condition of reciprocal nonpenetration of shell elements. Pro- 
ceeding from this a model was suggested for fold formation in cylindrical shells with shock 
loading. At the heart of the model is a procedure [6] based on Timoshenko-type shell theory, 
plastic flow theory, and a variation-difference method for numerical solution. Large deflec- 
tions are considered by stepwise reconstruction of the position of the central surface of the 
shell. In the model starting from the instant of time at which a deflection occurs in the 
shell exceeding its thickness a control is introduced for the nature of buckling. The con- 
trol process includes the following: 

a) determination of calculation nodal points for the shell falling at the tip or hollow 
of the folds formed; 

b) the phenomenon of possible closing up of part of the shell surface (internal and ex- 
ternal) with formation of a fold. According to experiments the number of folds 
analyzed should not be less than two from both edges of the shell. The process of 
closing up for a given load first of all ceases at that fold which is located closer 
to the shell edge from the direction of the immovable support. 

In developing a calculation for closing up of some part of a fold, a conversion is car- 
ried out to longitudinal velocity for each pair of points in contact by averaging their veloc- 
ities at the instant of contact. For points in contact with the striker or support the 
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velocity is compared with striker or support velocity, respectively. The retardation force 
for the striker is taken to be equal to the longitudinal force of resistance to shell defor- 
mation in a zone distant from the region of points which are in contact. 

It should be noted that calculated data are in sufficiently good agreement with experi- 
mental results when boundary conditions for the shell edges are conditions for their jointed 
fixing with an immovable support and striker. 

Comparison of calculated values with experimental values was carried out according to 
two parameters: time dependence of compressive force N = N(t) and residual shape of shell. 
Given in Fig. 2 are experimental (a, c, d, f for tests 1-4) and calculated (b, e, g for load- 
ing conditions in tests, i, 2, 4) of relationship N = N(t). 

Use of a porous filler for creating internal pressure in a shell promoted axisymmetrical 
buckling during the whole process of axial compression (Fig. 3). Conformity of relationships 
N = N(t) for shells with a filler and without it is observed up to point A (Fig. 2, curves c 
and d) when buckling in shells is axisymmetrical. Then buckling of a shell without a filler 
changes into an asymmetrical form and relationships N = N(t) start to differ, The effect of 
a porous filler is not taken into account in calculations and N = N(t) corresponded to the 
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longitudinal forms realized in the shell in the zone adjacent to folds formed from the direc- 
tion of the immovable support. 

The good agreement can be seen in Fig. 2 of calculations and experiments for relation- 
ship N = N(t) up to quite large values of shell compression (=40%) with which the given fil- 
ler still does not have a marked effect on longitudinal force realized in the shell. The 
calculated nature of shape change for a cylindrical shell at different instants of time (after 
i00 ~sec) for test No. 4 is given in Fig. 3. By comparing Fig. 3 with Fig. 2f over time it 
is possible to note that the increase in N = N(t) up to a critical value is observed with 
deflections exceeding the shell thickness, and a drop is observed with intense fold forma- 
tion. 

Comparison of calculated results with experimental data shows quite good agreement both 
for residual shell shape (see Figs. ib, c and Fig. 3), and for the relationship N = N(t) (see 
Fig. 2), which points to the efficiency of the model suggested in describing shock compres- 
sion of cylindrical shells of moderate thickness (h/R = 1/10...I/5). 

. 

2. 

3. 

4. 

5. 
6. 

7. 

LITERATURE CITED 

B. V. Bagryanov, G. A. Kvaskov, et al., "Study of axial dynamic compression of tubular 
metal crushers," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1982). 
A. Koppa, "Mechanical buckling of an annular cylindrical shell with longitudinal impact," 
Mekhanika, No. 6 (1961). 
A. B. Efimov and V. I. Malyi, "Mechanism of buckling for a cylindrical shell with longi- 
tudinal impact," in: Shell and Plate Theory [in Russian], Nauka, Moscow (1973). 
V. G. Bazhenov and V. K. Lomunov, "Experimental and theoretical study of elastoplastic 
buckling of cylindrical shells with axial impact," Prikl. Mekh., No. 6 (1983). 
A. S. Vol'mir, Nonlinear Plate and Shell Dynamics [in Russian], Nauka, Moscow (1972). 
V. G. Bazhenov and V. K. Lomunov, "Study of elastoplastic buckling of shells of rota- 
tion with shock loading," in: Applied Problems of Strength and Ductility, All-Union 
Intervuz Meeting [in Russian] , No. 2, Gorky Univ., Gorky (1975). 
G. V. Brigadirov and V. K. Lomunov, "Two calculation schemes for impact buckling of 
cylindrical shells," in: Applied Problems of Strength and Ductility, All-Union Intervuz 
Meeting [in Russian], No. 28, Gorky Univ., Gorky (1984). 

PLASTIC MODELS ~N PROBLEMS OF ELASTIC DEFORMATION OF ROLLED SHELLS 

S. V. Lavrikov and A. F. Revuzhenko UDC 539.3 

i. The questions considered in this work arose from the following considerations. We 
refer to classical solution of the Lam4 problem for a thick-walled cylindrical tube. In 
view of axial symmetry for the problem tangential stresses are absent: Or@ = 0 (r and @ are 
polar coordinates). This means that if an arbitrary number of cuts is made in the tube over the 
circumference r = const, then these cuts do not impinge on the operation of the structure. 
Consequently, the cross section of the tube may be represented by a collection of thin in- 
dividual rings mounted close to each other; rings operate so that conditions at contacts 
between them do not affect the operation of the whole structure. As is well known, in this 
scheme the material is loaded very unevenly, and if the external radius of the tube exceeds 
the internal radius by more than a factor of three to four then a further increase in tube 
thickness has practically no effect on the change over of the inner region into a plastic 
condition (failure). Therefore, an idea occurs naturally: is it possible to organize the 
work of elastic rings in such a way that external friction forces are mobilized between them 
which would Contribute to "resisting" external pressure. We cut up rings over a certain 
radius and glue them together with displacement by one pitch (Fig. i). The structure obtained 
differs in principle from the previous one. It might be expected that as a result of slippage 
of layers it will be possible to include in the operation material distant from the inner 
boundary, and consequently to distribute the applied load more uniformly thus incresing the 
supporting capacity of the structure. 
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